Respuesta :

The first step for solving this expression is to distribute [tex] \frac{3}{8} [/tex] through the first set of parenthesis.
[tex]( \frac{3}{8}x - \frac{3}{8})[/tex] × (x - 9)
Now use the FOIL method to multiply each term in the first parenthesis by each term in the second parenthesis. This will look like the following:
[tex] \frac{3}{8} [/tex]x × x - [tex] \frac{3}{8} [/tex]x × 9 - [tex] \frac{3}{8} [/tex]x - [tex] \frac{3}{8} [/tex] × (-9)
Remember that multiplying two negatives together equals a positive,, so the expression changes to:
[tex] \frac{3}{8} [/tex]x × x - [tex] \frac{3}{8} [/tex]x × 9 - [tex] \frac{3}{8} [/tex]x + [tex] \frac{3}{8} [/tex] × 9
Calculate the product of all of the sets of multiplication to make the expression become:
[tex] \frac{3}{8} [/tex]x² - [tex] \frac{27}{8} [/tex]x - [tex] \frac{3}{8} [/tex]x + [tex] \frac{27}{8} [/tex]
Lastly,, calculate the difference of - [tex] \frac{27}{8} [/tex]x - [tex] \frac{3}{8} [/tex]x to find your final answer.
[tex] \frac{3}{8} [/tex]x² - [tex] \frac{15}{4} [/tex]x + [tex] \frac{27}{8} [/tex]
Let me know if you have any further questions.
:)
ACCESS MORE