Respuesta :
First, factor the left side:
[tex](csc^2(x))^2-(cot^2(x))^2[/tex]
This can be simplified using [tex]x^2-y^2 = (x+y)(x-y)[/tex] where the csc term is x and the cot term is y:
[tex](csc^2(x)+cot^2(x))(csc^2(x)-cot^2(x))[/tex]
One of our Pythagorean Identities states that:
[tex]csc^2(x)-cot^2(x)=1[/tex]
So the left side is now:
[tex]csc^2(x)+cot^2(x)[/tex]
Now we can use the same Pythagorean Identity to change the right side to:
[tex]2csc^2(x)-(csc^2(x)-cot^2(x))[/tex]
All we did was express 1 in terms of csc and cot.
Distribute the negative:
[tex]2csc^2(x)-csc^2(x)+cot^2(x)[/tex]
Combine like terms:
[tex]csc^2(x)+cot^2(x)[/tex]
Now the left and right sides are the same.
[tex](csc^2(x))^2-(cot^2(x))^2[/tex]
This can be simplified using [tex]x^2-y^2 = (x+y)(x-y)[/tex] where the csc term is x and the cot term is y:
[tex](csc^2(x)+cot^2(x))(csc^2(x)-cot^2(x))[/tex]
One of our Pythagorean Identities states that:
[tex]csc^2(x)-cot^2(x)=1[/tex]
So the left side is now:
[tex]csc^2(x)+cot^2(x)[/tex]
Now we can use the same Pythagorean Identity to change the right side to:
[tex]2csc^2(x)-(csc^2(x)-cot^2(x))[/tex]
All we did was express 1 in terms of csc and cot.
Distribute the negative:
[tex]2csc^2(x)-csc^2(x)+cot^2(x)[/tex]
Combine like terms:
[tex]csc^2(x)+cot^2(x)[/tex]
Now the left and right sides are the same.
Following are the proving to the given expression:
Given:
[tex]\bold{csc^4x-cot^4x=2csc^2x-1}[/tex]
To find:
Proving=?
Solution:
[tex]\to \bold{csc^4x-cot^4x=2csc^2x-1}[/tex]
Using formula:
[tex]\to (a^2-b^2)=(a-b)(a+b)[/tex]
Solving the L.H.S part:
[tex]\to \bold{csc^4x-cot^4x}\\\\\to \bold{(csc^2x)^2-(cot^2x)^2}\\\\\to \bold{(csc^2x-cot^2x) (csc^2x+cot^2x)}\\\\\therefore \\\\(csc^2x-cot^2x =1)\\\\(csc^2x-1 = cot^2x)\\\\\to \bold{1 (csc^2x+cot^2x)}\\\\\to \bold{(csc^2x+csc^2x-1)}\\\\\to \bold{( 2csc^2x-1)}\\\\[/tex]
Hence proved that L.H.S= R.H.S.
Learn more:
brainly.com/question/2292532