Drag and drop an answer to each box to correctly complete the explanation for deriving the formula for the volume of a sphere.

Respuesta :

The volume of a sphere is given by:

[tex]V= \frac{4}{3} \pi r^{3}[/tex]

So, we need to deduct this equation. We will walk through Calculus on the concept of a solid of revolution that is a solid figure that is obtained by rotating a plane curve around some straight line (the axis of revolution) that lies on the same plane. We know from calculus that:

[tex]V=\pi \int_{a}^{b}[f(x)]^{2}dx[/tex]

Then, according to the concept of solid of revolution we are going to rotate a circumference shown in the figure, then:

[tex] x^{2}+y^{2}=r^{2}[/tex]

Isolationg y:

[tex]y= \sqrt{r^{2}-x^{2}}[/tex]

So,

[tex]f(x)=y=\sqrt{r^{2}-x^{2}}[/tex]

[tex]V=\pi \int_{a}^{b}[\sqrt{r^{2}-x^{2}}]^{2}dx[/tex]

[tex]V=\pi \int_{a}^{b}(r^{2}-x^{2})dx[/tex]

being -r and r the limits of this integral. 

[tex]V=\pi \int_{-r}^{r}(r^{2}-x^{2})dx[/tex]

Solving:

[tex]V=\pi[r^{2}x-\frac{x^{3}}{3}]\right|_{-r}^{r}[/tex]

Finally:

[tex]V=\pi(r^{3}-\frac{r^{3}}{3})-\pi(-r^{3}+\frac{r^{3}}{3})= \frac{4}{3} \pi r^{3}[/tex]

Ver imagen danielmaduroh