The propeller of an airplane is 9 feet in diameter. What is the speed of the tip of a propeller blade if the angular velocity of the propeller is 50 radians per second?

11 ft/sec
22.5 ft/sec
225 ft/sec

Respuesta :

speed = angular velocity * radius

angular velocity = 50
radius = diameter / 2 = 9/2

∴ speed = 50 * 9/2 = 225 ft/sec

The correct answer is the third option 225 ft/sec


Answer:

The speed of the tip of a propeller blade is   [tex]225\, \frac{ft}{sec}[/tex]

Step-by-step explanation:

Given

Angular velocity of the propeller , [tex]\omega = 50 \, \frac{radians}{second}[/tex]

Diameter of propeller blade , D= 9 feet

Therefore radius of propeller blade , [tex]R=\frac{D}{2}=4.5 feet[/tex]

Now speed of tip of blade , [tex]v=\omega \times R=50\times 4.5\frac{ft}{sec}=225\frac{ft}{sec}[/tex]

Thus the speed of the tip of a propeller blade is   [tex]225\, \frac{ft}{sec}[/tex]