Respuesta :
check the picture below. So the ellipse looks more or less like so.
since the major axis is over the x-axis, is a horizontal ellipse, notice the "a" component length and the value for "c".
[tex]\bf \textit{ellipse, horizontal major axis} \\\\ \cfrac{(x- h)^2}{ a^2}+\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2- b ^2} \end{cases}\\\\ -------------------------------[/tex]
[tex]\bf \begin{cases} h=0\\ k=0\\ a=10\\ c=8 \end{cases}\implies 8=\sqrt{a^2-b^2}\implies 8^2=a^2-b^2\implies b^2=10^2-8^2 \\\\\\ b=\sqrt{100-64}\implies b=6 \\\\\\ \cfrac{(x-0)^2}{10^2}+\cfrac{(y-0)^2}{6^2}=1\implies \cfrac{x^2}{100}+\cfrac{y^2}{36}=1[/tex]
since the major axis is over the x-axis, is a horizontal ellipse, notice the "a" component length and the value for "c".
[tex]\bf \textit{ellipse, horizontal major axis} \\\\ \cfrac{(x- h)^2}{ a^2}+\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2- b ^2} \end{cases}\\\\ -------------------------------[/tex]
[tex]\bf \begin{cases} h=0\\ k=0\\ a=10\\ c=8 \end{cases}\implies 8=\sqrt{a^2-b^2}\implies 8^2=a^2-b^2\implies b^2=10^2-8^2 \\\\\\ b=\sqrt{100-64}\implies b=6 \\\\\\ \cfrac{(x-0)^2}{10^2}+\cfrac{(y-0)^2}{6^2}=1\implies \cfrac{x^2}{100}+\cfrac{y^2}{36}=1[/tex]
![Ver imagen jdoe0001](https://us-static.z-dn.net/files/ddb/bd4d7f425862bbd99de9ac1e4ca2f1ae.jpeg)