Respuesta :
Centripetal Force (Fcp) = ?
His arm length = Radius (R) = 0.75 m
Discus velocity = Linear Velocity (V) = 5 m/s
Discus mass (m) = 2 kg
Centripetal Acceleration (Acp) = V^2/R or W^2 x R
In this case i will use the V^2/R formula, because it uses the discus velocity (V).
[tex]fcp = m \times acp \\ fcp = m \times {v}^{2} \div r \\ fcp = 2 \times {5}^{2} \div 0.75 \\ fcp = 2 \times 25 \div 0.75 \\ fcp = 50 \div 0.75[/tex]
[tex]fcp = 66.666... = 66 \: newtons[/tex]
Answer: Last option, 66 N.
His arm length = Radius (R) = 0.75 m
Discus velocity = Linear Velocity (V) = 5 m/s
Discus mass (m) = 2 kg
Centripetal Acceleration (Acp) = V^2/R or W^2 x R
In this case i will use the V^2/R formula, because it uses the discus velocity (V).
[tex]fcp = m \times acp \\ fcp = m \times {v}^{2} \div r \\ fcp = 2 \times {5}^{2} \div 0.75 \\ fcp = 2 \times 25 \div 0.75 \\ fcp = 50 \div 0.75[/tex]
[tex]fcp = 66.666... = 66 \: newtons[/tex]
Answer: Last option, 66 N.
Answer:
the answer is 66 N
Explanation:
Centripetal Force (Fcp) = ?
His arm length = Radius (R) = 0.75 m
Discus velocity = Linear Velocity (V) = 5 m/s
Discus mass (m) = 2 kg
Centripetal Acceleration (Acp) = V^2/R or W^2 x R
In this case i will use the V^2/R formula, because it uses the discus velocity (V).