Respuesta :
the picture in the attached figure
we know that
in the right triangle ABD
AB²=BD²+AD²-----> BD²=AB²-AD²
AB=8
AD=64/17
BD²=8²-(64/17)²----> 64-(4096/289)----> BD²=14400/289
BD=√(14400/289)-----> BD=120/17
sin A=BD/AB-----> sin A=(120/17)/8----> 15/17
the answer is
15/17
we know that
in the right triangle ABD
AB²=BD²+AD²-----> BD²=AB²-AD²
AB=8
AD=64/17
BD²=8²-(64/17)²----> 64-(4096/289)----> BD²=14400/289
BD=√(14400/289)-----> BD=120/17
sin A=BD/AB-----> sin A=(120/17)/8----> 15/17
the answer is
15/17
![Ver imagen calculista](https://us-static.z-dn.net/files/d88/c818a2d1b649b856cbcaf7e3139deb47.jpg)
Answer:
b) 15/17
Step-by-step explanation:
Notice that ΔABD is a right triangle with AB the hypotensue. The sine of an angle is the ratio of
opposite leg
hypotenuse
. In ΔABD you can solve for the opposite leg (BD) using the Pythagorean Theorem.
BD2 + [64/17)2 = 82
BD =
120
17
. Therefore, sin A =
15
17