Respuesta :

Out of the four options:
A. x=-4y
B. x+y=-4
C. y=-4
D. x^2+(y+2)^2=4
D is the correct answer

The equation r = - 4 sinθ, can be written in rectangular coordinates as -

[tex]x^{2} +y^{2} =-4y[/tex]

We have a equation in polar coordinates -

r = - 4 sin θ

We have to convert it into rectangular coordinates (x, y).

What is the relation between Polar - coordinates and Rectangular - Coordinates?

The following relation exists between the polar and rectangular coordinates -

[tex]r=\sqrt{x^{2} +y^{2} }[/tex]                 (Eqn. 1)

x = r cosθ                      (Eqn. 2)

y = r sinθ                       (Eqn. 3)

                                                               

(You can refer to image attached for conceptual clearance)

Now, we have -

r = - 4 sinθ

Multiply by ' r '  on both sides of equation, we get -

[tex]r^{2} = 4r\;sin[/tex]  θ

We know :

                                            [tex]r=\sqrt{x^{2} +y^{2} }[/tex]                             (from Eqn. 1)

                                            y = r sinθ                                    (from Eqn. 3)

Substituting the values, we get -

                                            [tex]x^{2} +y^{2} =-4y[/tex]

                                                     

Hence, the equation r = - 4 sinθ, can be written in rectangular coordinates as -

                                           [tex]x^{2} +y^{2} =-4y[/tex]

To solve more questions on transforming equation from polar form to rectangular form, visit the link below -

brainly.com/question/2293027

#SPJ2

Ver imagen kumaripoojavt
ACCESS MORE