For 100 points, solve:



[tex]\text{We are given two planes $\Pi_1$ and $\Pi_2$ in parametric vector form,}\\[/tex]

[tex]\[\Pi_1 \ : \ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} + \lambda_1\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} + \lambda_2\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \]\\[/tex]

[tex]\[\Pi_2 \ : \ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} 0 \\ -2 \\ 4 \end{pmatrix} + \mu_1\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \mu_2\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}\]\\[/tex]

[tex]\[\text{where $x_1$, $x_2$, $x_3$, $\lambda_1$, $\lambda_2$, $\mu_1$, and $\mu_2\in\mathbb{R}$}[/tex]

Find vectors n₁ and n₂ that are normals to π₁ and π₂ respectively and explain how you can tell without performing any extra calculations that π₁ and π₂ must intersect in a line.