Given the initial value problem: ty′(t)+1)y=t, with ln y(ln2)=1, where t>0. Solve for y(t).
a) y(t)=eᵗ²−¹
b) y(t)=eᵗ²
c) y(t)=eᵗ−¹
d) y(t)=eᵗ⁺¹