Given the line l that passes through the points (0,0,0) and (1,1,1), write the 3D matrix M that rotates a 3D vector v about the line l with the angle θ.
a) ( M = beginpmatrix cos(θ) & -sin(θ) & 0 sin(θ) & cos(θ) & 0 0 & 0 & 1 endpmatrix )
b) ( M = beginpmatrix 1 & 0 & 0 0 & cos(θ) & -sin(θ) 0 & sin(θ) & cos(θ) endpmatrix )
c) ( M = beginpmatrix cos(θ) & 0 & -sin(θ) 0 & 1 & 0 sin(θ) & 0 & cos(θ) endpmatrix )
d) ( M = beginpmatrix cos(θ) & 0 & sin(θ) 0 & cos(θ) & -sin(θ) 0 & sin(θ) & cos(θ) endpmatrix )