Solve the following recursion relations by using the unfolding method (substitution method)
a) T(n) = T(n-1) + 1, T(0) = 1
b) T(n) = T(n-1) + n, T(0) = 1
c) T(n) = T(n-1) + logn, T(0) = 1
d) T(n) = 2T(n/2) + n, T(1) = 1
e) T(n) = 2ⁿ T(n-1), T(0) = 1