contestada

Помогите с тестом


1). Призма – это выпуклый многогранник, который состоит из:

а) многоугольника и нескольких параллелограммов

б) двух равных многоугольников и нескольких параллелограммов

в) двух равных многоугольников, лежащих в параллельных плоскостях,

и п параллелограммов

2). В основании призмы лежит:

а) любой выпуклый многоугольник

б) только правильный многоугольник

в) любой многоугольник или окружность

3). Призма является прямой, если:

а) боковые ребра перпендикулярны основаниям

б) основания – правильные многоугольники

в) некоторые боковые грани – квадраты

4). Призма является правильной, если:

а) в основании лежит правильный многоугольник

б) боковые грани перпендикулярны основаниям

в) она прямая и в основании лежит правильный многоугольник

5). Высотой прямой призмы можно считать:

а) ребро основания

б) боковое ребро

в) любой отрезок, перпендикулярный основанию

6). Площадь боковой поверхности призмы – это:

а) сумма площадей всех боковых граней

б) сумма площадей двух оснований

в) сумма площадей всех её граней

7). Площадь полной поверхности призмы – это:

а) сумма площадей всех боковых граней

б) сумма площадей двух оснований

в) сумма площадей всех её граней

8). Площадь боковой поверхности прямой призмы можно найти по формуле:

а) Sбок=Sосн·h

б) Sбок=а·h, где а – сторона основания

в) Sбок=Росн·h

9). Площадь полной поверхности прямой призмы можно найти по формуле:

а) Sполн=Sосн+ Sбок

б) Sполн=2Sосн+ Sбок

в) Sполн=2Росн+ Sбок

Тест. 2 вариант.

1). Призма – это выпуклый многогранник, который состоит из:

а) двух равных многоугольников, лежащих в параллельных плоскостях,

и п параллелограммов

б) двух равных многоугольников и нескольких параллелограммов

в) многоугольника и нескольких параллелограммов

2). В основании призмы лежит:

а) только правильный многоугольник

б) любой многоугольник или окружность

в) любой выпуклый многоугольник

3). Призма является прямой, если:

а) некоторые боковые грани – квадраты

б) боковые ребра перпендикулярны основаниям

в) основания – правильные многоугольники

4). Призма является правильной, если:

а) в основании лежит правильный многоугольник

б) она прямая и в основании лежит правильный многоугольник

в) боковые грани перпендикулярны основаниям

5). Высотой прямой призмы можно считать:

а) боковое ребро

б) любой отрезок, перпендикулярный основанию

в) ребро основания

6). Площадь боковой поверхности призмы – это:

а) сумма площадей всех её граней

б) сумма площадей двух оснований

в) сумма площадей всех боковых граней

7). Площадь полной поверхности призмы – это:

а) сумма площадей всех боковых граней

б) сумма площадей всех её граней

в) сумма площадей двух оснований

8). Площадь боковой поверхности прямой призмы можно найти по формуле:

а) Sбок=Росн·h

б) Sбок=Sосн·h

в) Sбок=а·h, где а – сторона основания

9). Площадь полной поверхности прямой призмы можно найти по формуле:

а) Sполн=Sосн+ Sбок

б) Sполн=2Росн+ Sбок

в) Sполн=2Sосн+ Sбок