(a) Compare the Maclaurin polynomials of degree 2 for f(x) = ex and degree 3 for g(x) = xex. What is the relationship between them?
(b) Use the result in part (a) and the Maclaurin polynomial of degree 3 for f(x) = sin(x) to find a Maclaurin polynomial of degree 4 for the function g(x) = x sin(x).
(c) Use the result in part (a) and the Maclaurin polynomial of degree 3 for f(x) = sin(x) to find a Maclaurin polynomial of degree 2 for the function g(x) = (sin(x))/x.