Assume that p and q are odd functions Prove that the integrand below is ether even or odd. Then give the value of the integral or show how it can be simplified ᵃ∫₋ₐ p(q(x)) dx
Substitute -x for x in p/a(x). Given that p and q are odd, what is the value of p(q(-x)) A. p(q-x))=p(-q(-x)) B. p(q(-x))=-p(a(-x)) C. p(q(-x))=-p(a(x)) D. p(q(-x))=p(a(x)) Given the results of the previous step, is p(q(x)) even or odd
a. Even b. Odd Given the symmetry of p(q(x)), solve or simplity ᵃ∫₋ₐ p(q(x)) dx a. ᵃ∫₋ₐ p(q(x)) dx = ᵃ∫₀ p(q(x)) dx
b. ᵃ∫₋ₐ p(q(x)) dx = 0
c. ᵃ∫₋ₐ p(q(x)) dx = 1
d. ᵃ∫₋ₐ p(q(x)) dx = 2 ᵃ∫₀ p(q(x)) dx