io
Jit
ti
=(
d
Fill in the Blank:
The particles of a gas are spaced from each other. The space between the particles is occupied by2
According to the kinetic theory there are no attractive or repulsive 3 at work between the particles. This explains
constant 5 motion and that collisions between them are elastic. This means that during a collision, the total amount
why gasses 4 their containers. Also according to the kinetic theory the particles of a gas move rapidly in
of 6 remains constant.
The pressure and volume of a fixed mass of gas are 7 related. If the pressure decreases, the volume 8
This relationship is known as 9 law. The volume of a fixed 10 of gas is directly related to its temperature in K.
This relationship is known as _11 law. 12 law states that the pressure of a gas is 13 proportional to the Kelvin
law. It can be used in situations in which 16 of the variables are constant.
temperature if the volume 14. The three separate gas laws can be written as a single expression called the 15 gas
18 are known.
The ideal gas law permits you to solve for the number of _17_ in a contained gas when pressure, volume and
The ideal gas law is described by the formula 19, where the variable 20 represents the number
moles and the letter_21 is the ideal gas constant. R is equal to _22_. A gas that adheres very closely to the gas
re's at some conditions of the temperature and pressure is said to exhibit_23_behavior under those conditions. There
are 24 gasses that behave ideally under all temperatures and pressures. Deviations from ideal behavior can be
explained by the intermolecular_25_ between gas particles and the _26_ of the particles.
Although the particles that make up different gasses vary greatly in size, _27_hypothesis states that equal
volumes of gasses at the same_28_ and temperature contain equal numbers of particles. In brief, 6.02 x 102 particles
or 29 mole of any gas at STP occupies a volume of 30.
The rate of effusion of a gas is 31 proportional to the 32 of the gas's _33_. This relationship is referred to
as 34 35 law of 36 pressure states that the total pressure exerted by a mixture of gasses is equal to the _37_of
all the individual pressures.
Problem Set: Gasses