Given: \overline{AB} \cong \overline{BC} AB ≅ BC and DD is the midpoint of \overline{AC}. AC . Prove: \overline{BD} BD bisects \angle ABC∠ABC. Note: quadrilateral properties are not permitted in this proof. Step Statement Reason 1 \overline{AB} \cong \overline{BC} AB ≅ BC DD is the midpoint of \overline{AC} AC Given A B C D Note: the segment ACAC is a straight segment.