What is the justification for step B?

Review the proof of de Moivre’s theorem.


Proof of de Moivre's Theorem

[cos(θ) + i sin(θ)]k + 1

A = [cos(θ) + i sin(θ)]k ∙ [cos(θ) + i sin(θ)]1

B = [cos(kθ) + i sin(kθ)] ∙ [cos(θ) + i sin(θ)]

C = cos(kθ)cos(θ) − sin(kθ)sin(θ) + i [sin(kθ)cos(θ) + cos(kθ) sin(θ)]

D = cos(kθ + θ) + i sin(kθ + θ)

E = cos[(k + 1)θ] + i sin[(k + 1)θ]

A) distributive property

B) factoring

C) multiplication rule

D) assumption (for n = k step)

Respuesta :

ACCESS MORE