Given [tex]$\triangle RST \cong \triangle XYZ$[/tex]. Points [tex]$P$[/tex] and [tex]$W$[/tex] lie on [tex]$ST$[/tex] and [tex]$YZ$[/tex], respectively. Which of the following statements are true?
A) If [tex]$P$[/tex] is the midpoint of [tex]$\overline {ST}$[/tex] and [tex]$W$[/tex] is the midpoint of [tex]$\overline {YZ},$[/tex] then [tex]$\triangle RSP\cong \triangle XYW$[/tex].

B) If [tex]$\overline {RP}$[/tex] bisects [tex]$\angle SRT$ and [tex]$\overline {XW}$[/tex] bisects [tex]$\angle YXZ$[/tex], then [tex]$\triangle RSP\cong \triangle XYW$[/tex].

C) If [tex]$RP=XW$[/tex], then [tex]$\triangle RSP\cong \triangle XYW$[/tex].

D) If [tex]$\overline {RP}\perp\overline {ST}$[/tex] and [tex]$\overline {XW}\perp\overline{YZ}$[/tex], then [tex]$\triangle RSP\cong \triangle XYW$[/tex].